博客
关于我
牛客练习赛25 因数个数和
阅读量:525 次
发布时间:2019-03-08

本文共 603 字,大约阅读时间需要 2 分钟。

针对每一次数询问询问中的数值x(1e9),我们需要计算1到x范围内所有整数的因数个数之和。这涉及到对因数分解及其计数的重复运算,直接利用traditional方式就是计算每数的除数个数累加,这种方法的复杂度是n²,完全不适合处理x达到1e9的情况。

为了优化,我们可以利用数论中的数学性质。任何一个数x的因数对(i, j)满足i*j = x。因此,1到x的所有因数总数等价于统计每个i从1到sqrt(x)的贡献。当我们将x拆分为i与x/i的乘积时,每个i <= sqrt(x)对应到一个唯一的因数对。因此,我们只需统计i的数量即可覆盖所有因数对。这种方法的复杂度至多为sqrt(x),极大提升计算效率。

例如,对于x=10,sqrt(10)=3.162,向上取整为4。在这个循环中,i取1, 2, 3:

i=1: 10/1=10,计数+10个因数;i=2: 10/2=5,计数+5个因数;i=3: 10/3=3.333,只计数整数部分3,计数+3个因数;i=4: 10/4=2.5,计数+2个因数;这会导致因数总和为10+5+3+2=20个因数,实际因数数目为18(因为每个因数对被计算两次)。因此,最终因数总数应为20 - (3+2)=18。

这种方法展示了如何将指数级复杂度的计算优化为根数级复杂度,大大提升效率。代码实现简洁明了,适合实际操作。通过上述优化,我们可以方便、快速地处理非常大的数值范围。

转载地址:http://jckiz.baihongyu.com/

你可能感兴趣的文章
numpy数组索引-ChatGPT4o作答
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Nutch + solr 这个配合不错哦
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVelocity标签使用详解
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>
nvidia-htop 使用教程
查看>>
nvidia-smi 参数详解
查看>>
nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
查看>>
NYOJ 1066 CO-PRIME(数论)
查看>>
nyoj------203三国志
查看>>
nyoj58 最少步数
查看>>